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Abstract
1.	 Hidden Markov models (HMMs) that include individual-level random effects have 

recently been promoted for inferring animal movement behaviour from biotelem-
etry data. These ‘mixed HMMs’ come at significant cost in terms of implementation 
and computation, and discrete random effects have been advocated as a practical 
alternative to more computationally intensive continuous random effects. However, 
the performance of mixed HMMs has not yet been sufficiently explored to justify 
their widespread adoption, and there is currently little guidance for practitioners 
weighing the costs and benefits of mixed HMMs for a particular research objective.

2.	 I performed an extensive simulation study comparing the performance of a suite 
of fixed and random effect models for individual heterogeneity in the hidden state 
process of a two-state HMM. I focused on sampling scenarios more typical of 
telemetry studies, which often consist of relatively long time series (30–250 ob-
servations per animal) for relatively few individuals (5–100 animals).

3.	 I generally found mixed HMMs did not improve state assignment relative to stand-
ard HMMs. Reliable estimation of random effects required larger sample sizes 
than are often feasible in telemetry studies. Continuous random effect models 
performed reasonably well with data generated under discrete random effects, 
but not vice versa. Random effects accounting for unexplained individual variation 
can improve estimation of state transition probabilities and measurable covariate 
effects, but discrete random effects can be a relatively poor (and potentially mis-
leading) approximation for continuous variation.

4.	 When weighing the costs and benefits of mixed HMMs, three important consider-
ations are study objectives, sample size and model complexity. HMM applications 
often focus on state assignment with little emphasis on heterogeneity in state 
transition probabilities, in which case random effects in the hidden state process 
simply may not be worth the additional effort. However, if explaining variation 
in state transition probabilities is a primary objective and sufficient explanatory 
covariates are not available, then random effects are worth pursuing as a more 
parsimonious alternative to individual fixed effects.
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1  | INTRODUC TION

Hidden Markov models (HMMs) are used extensively in ecology 
for inferences about unobservable state processes from sequential 
(e.g. time series) data (McClintock et al., 2020; Zucchini et al., 2016). 
Some of the most widely used HMMs in population ecology include 
capture–recapture (e.g. Pradel,  2005), species occurrence (e.g. 
Gimenez et al., 2014) and animal movement (e.g. Franke et al., 2004) 
models. As recent advances in animal-borne biologging technology 
have permitted the collection of detailed location and biotelemetry 
data (e.g. Cooke et al., 2004), HMMs for inferring animal movement 
behaviour have become particularly popular (e.g. Jonsen et al., 2005; 
Langrock et al., 2012; McClintock et al., 2012; Morales et al., 2004; 
Patterson et  al.,  2009). This has been bolstered by user-friendly 
software specifically tailored to HMMs for these data (McClintock 
& Michelot, 2018; Michelot et al., 2016).

While animal movement HMMs were originally formulated as 
relatively simple two-state (e.g. ‘foraging’ and ‘transit’) models de-
scribing steps and turns between successive locations (e.g. Franke 
et  al.,  2004; Morales et  al.,  2004), they have since become much 
more complicated by incorporating location measurement error 
(e.g. Jonsen et  al.,  2005), >2 movement behaviour states (e.g. 
Michelot et  al.,  2017; Pirotta et  al.,  2018), additional bioteleme-
try data streams (e.g. DeRuiter et  al.,  2017; Isojunno et  al.,  2017) 
and ‘mixed HMMs’ including individual-level random effects (e.g. 
Langrock et al., 2012; McClintock et al., 2013; McKellar et al., 2015; 
Schliehe-Diecks et  al.,  2012). While all of these advances bring 
the potential for new and exciting inferences about animal move-
ment behaviour, they also pose various challenges (e.g. Patterson 
et al., 2017; Pohle et al., 2017). The inferential benefits of accounting 
for measurement error or including additional data streams to char-
acterize >2 behavioural states can justify this added complexity (e.g. 
Bradshaw et al., 2007; McClintock, 2017), yet the general benefits 
of mixed HMMs that include individual random effects are less well 
understood.

There is evidence for the benefits of individual random effects 
on the (conditional) observation process of HMMs in other contexts 
(e.g. Altman, 2007; Rueda et al., 2013), but there is surprisingly little 
evidence for benefits on the hidden state process. In a simulation 
study, Altman (2007) concluded for their case that there was ‘far 
more information about the parameters associated with the condi-
tional model than those associated with the hidden model’ and that 
mixed HMMs allowing for individual differences in the hidden state 

process ‘may explain very little additional variation in the observed 
data and, hence, may not be worthwhile from a statistical stand-
point’. Yet, understanding individual heterogeneity in behaviour 
or life-history strategies is a fundamental component of ecology 
and evolution (e.g. Cam et al., 2002; Gimenez et al., 2018; Johnson 
et  al.,  1986; Réale et  al.,  2007; Revilla & Wiegand,  2008), and ac-
counting for individual variation in the hidden state process is clearly 
worthwhile for this purpose. Most animal movement mixed HMM 
applications have employed random effects on the hidden state pro-
cess more as a statistical tool to ‘mop up’ unexplained variation and 
improve goodness-of-fit, with little attempt to interpret the mech-
anisms or implications of this variation (e.g. DeRuiter et  al.,  2017; 
McKellar et  al.,  2015; Towner et  al.,  2016). Part of the reason for 
this may be that, unlike effect sizes for explanatory covariates (e.g. 
age, sex, weight), generic random effects are difficult to interpret 
(e.g. Altman, 2007; Gimenez et al., 2018), particularly in biological 
terms across free-ranging telemetered individuals, each typically 
with different deployment lengths and being observed in different 
environmental and behavioural contexts (e.g. DeRuiter et al., 2017; 
Towner et  al.,  2016). Nevertheless, failing to properly account for 
individual variation could be detrimental to the estimation of effect 
sizes for any explanatory covariates on the hidden state process (e.g. 
DeRuiter et al., 2017).

In their discussion of the benefits of individual random effects 
on the hidden state process, DeRuiter et al (2017) claim ‘it is easy to 
argue that random effects to account for individual variation are a key 
component of animal behaviour models’. I certainly do not disagree 
with this, but the empirical performance of these complex models 
has not yet been sufficiently explored to justify their widespread 
adoption (sensu Hodges, 2019), and there is currently little guidance 
for practitioners to determine when and how they should pursue 
random effects. This would all be relatively moot if mixed HMMs 
were easy for practitioners to implement, but they typically are not. 
Mixed HMMs have historically required custom-coded model fit-
ting algorithms at significant computational cost (e.g. Altman, 2007; 
Langrock et al., 2012; Maruotti & Rydén, 2009; McKellar et al., 2015; 
Schliehe-Diecks et al., 2012; Towner et al., 2016) and can be very 
challenging to reliably fit to time series of animal biotelemetry data 
(e.g. DeRuiter et al., 2017; Isojunno et al., 2017). Furthermore, un-
like other ecological applications of mixed HMMs that typically in-
clude relatively many individuals (e.g. capture–recapture; Burnham 
& White, 2002; Gimenez & Choquet, 2010) or sites (e.g. occupancy; 
Gimenez et al., 2014) and relatively short time series, animal-borne 

5.	 To help put my findings in context and illustrate some potential challenges that 
practitioners may encounter when applying mixed HMMs, I revisit a previous anal-
ysis of long-finned pilot whale biotelemetry data.
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biotelemetry studies typically include relatively few individuals (e.g. 
due to financial and logistical constraints) and relatively long time se-
ries of unequal length for each individual (e.g. due to variable battery 
life, tag loss and mortality). Little is currently known about how well 
mixed HMMs perform under these sampling conditions.

These challenges and uncertainties prompted me to investigate 
the benefits of accounting for individual variation in the hidden 
state process of HMMs that are frequently used for inferring animal 
movement behaviour from biotelemetry data. Using extensive sim-
ulation and a case study, my goal is to provide some guidance to aid 
practitioners in weighing the costs and benefits of mixed HMMs for 
a particular research objective. I first describe several of the most 
common HMM formulations and inferential procedures that account 
for individual variation. I then present a large-scale simulation study 
evaluating the performance of these various approaches in terms of 
hidden state estimation, parameter estimation and detection of in-
dividual variation by standard information-theoretic model selection 
criteria. To help put my findings in context and illustrate some po-
tential challenges that practitioners may encounter when applying 
mixed HMMs, I then revisit an analysis of long-finned pilot whale 
biotelemetry data originally performed by Isojunno et  al.  (2017). 
Finally, I discuss the implications of my findings in establishing some 
considerations for practitioners contemplating the inclusion of indi-
vidual random effects in their own analyses.

2  | INDIVIDUAL- LE VEL EFFEC TS IN HMMs

2.1 | Model formulations

Under ‘complete pooling’, standard HMMs for M individual time 
series of length Tm (m  =  1,  …,  M) assume no individual effects on 
parameters (i.e. a common set of parameters is shared among the M 
individuals). Assuming independence between individuals, the likeli-
hood function for this ‘null’ model with N hidden states can be suc-
cinctly expressed using the forward algorithm:

where � =
(
�1, …, �N

)
 is a row vector of initial state probabilities �∑

N
j= 1

�j = 1
�
, Γ = (� i,j) is a N  ×  N state transition probability   

matrix with entries � i,j corresponding to the probability of switching 
from state i at time t  −  1 to state j at time t

�∑
N
j= 1

� i,j = 1
�
, 

P
(
ym,t

)
= diag

(
f
(
ym,t|Sm,t = 1

)
,…, f

(
ym,t|Sm,t = N

))
 is a N × N diagonal 

matrix with entries f
(
ym,t|Sm,t = s

)
 corresponding to the conditional 

probability density of observation ym,t given the state Sm,t ∈ {1, …, N} 
at time t, and 1 is a column vector of N ones (e.g. Zucchini et al., 2016). 
Here I assume all individuals share common state-dependent distribu-
tion parameters, a case where pooling collective movements across M 
individuals using a joint likelihood has been demonstrated to improve 
behavioural state assignment in animal movement HMMs (Jonsen, ​
2016). When explanatory individual covariates (e.g. age, sex, weight) 

are available, the likelihood can be extended to accommodate individ-
ual variation attributable to these factors through link functions for the 
model parameters (e.g. McClintock & Michelot, 2018).

Generic individual heterogeneity in HMMs is typically han-
dled using individual-level fixed effects (termed ‘no pooling’; e.g. 
Patterson et  al.,  2009), discrete-valued random effects based 
on finite mixtures (e.g. DeRuiter et al., 2017; Maruotti & Rydén, 
2009; McKellar et al., 2015; Towner et al., 2016) or continuous-
valued random effects (e.g. Altman,  2007; Schliehe-Diecks 
et al., 2012). For individual fixed effects in the hidden state pro-
cess, we have:

where �m =
(
�m,1, …, �m,N

)
 and Γm =

(
�m,i,j

)
 is a N × N state transition 

probability matrix with entries �m,i,j corresponding to the probability 
of individual m switching from state i at time t − 1 to state j at time t. 
This model is highly parameterized with MN2 state transition probabil-
ities, but it avoids any distributional assumptions about the individual 
effects.

For mixed HMMs with discrete-valued random effects, we have:

where K ∈ {1, …, M − 1} is the number of mixtures (typically chosen a 
priori or based on model selection criteria; e.g. DeRuiter et al., 2017), 
�(k) =

(
�
(k)

1
, …, �

(k)

N

)
 and Γ(k) =

(
�
(k)

i,j

)
 have entries � (k)

i,j
 corresponding to 

the probability that an individual belonging to mixture k switches from 
state i at time t − 1 to state j at time t, and � =

(
�(1), …, �(K)

)
 are the 

mixture probabilities 
�∑

K
k= 1

�(k) = 1
�
. One would expect finite mix-

tures to be most appropriate for explaining individual variation attrib-
utable to unmeasured categorical covariates, but many such factors 
(e.g. age class, sex) can be measured in biotelemetry studies where 
individuals must be captured for tag deployment. It is less clear how 
appropriate finite mixtures are for ‘mopping up’ unexplained 
continuous-valued variation, but they have recently been promoted for 
this purpose in animal movement HMMs (e.g. McKellar et al., 2015; 
Towner et al., 2016).

For mixed HMMs with continuous random effects, the simplest 
models typically assume independent and identically distributed 
Gaussian random effects zm,i,j

iid
∼�

(
�i,j, �

2
i,j

)
 for i ≠ j, zm,i,j = 0 for i = j 

and �m,i,j =
exp(zm,i,j)∑
N
l = 1

exp(zm,i,l)
 such that:

where f
�
zm��, �
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∏
j≠if

�
zm,i,j��i,j, �i,j

�
 is the joint density of 

zm =
(
zm,i,j

)
i≠j and � ∈ ℝ

N(N− 1) its support. One would expect con-
tinuous random effects to be more parsimonious than fixed effects 
(Equation 2), but this comes at the cost of additional distributional as-
sumptions and computational complexity.
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2.2 | Maximum likelihood inference

I focus on maximum likelihood (ML) inference because HMMs can 
be fitted relatively quickly using ML methods, thereby facilitating 
large-scale simulation experiments. Standard ML inference by direct 
numerical maximization of the likelihood is straightforward in prin-
ciple for the null (Equation 1), fixed (Equation 2) and finite mixture 
(Equation 3) models (McKellar et  al.,  2015; Patterson et  al.,  2009; 
Zucchini et  al.,  2016), and there are R (R Core Team,  2020) pack-
ages specifically designed for fitting these HMMs (e.g. McClintock & 
Michelot, 2018; Visser & Speekenbrink, 2010).

The integral in the continuous random effects model (Equation 4) 
poses additional challenges that have historically made fitting by ML 
largely intractable (e.g. Altman, 2007; DeRuiter et al., 2017; Schliehe-
Diecks et al., 2012). The dimension of the integral is N(N − 1), which 
for N  >  2 is generally not feasible for direct maximization of the 
likelihood using standard numerical integration techniques such 
as Gaussian quadrature (e.g. Abramowitz & Stegun,  1964). This 
largely explains why custom Monte Carlo expectation-maximization 
(e.g. Altman,  2007) and Bayesian Markov chain Monte Carlo (e.g. 
McClintock et al., 2013) algorithms have often been employed for 
fitting HMMs with continuous random effects.

Framed as a compromise between null and fixed effect models, 
Burnham and White (2002) proposed an approximate but compu-
tationally simple method for continuous random effect estimation 
based solely on maximum likelihood estimates from fixed effect 
models. Little used outside of capture–recapture applications, their 
approach was originally developed for temporal random effects in 
the Cormack–Jolly–Seber model of survival and, to my knowledge, 
has not been applied or investigated in contexts other than capture–
recapture. However, standard open population capture–recapture 
models are simply special cases of HMMs (e.g. McClintock et al., 2020; 
Pradel, 2005). Full technical details can be found in Burnham and White 
(2002), but I describe their approach in the context of individual ran-
dom effects for the state transition probabilities (Equation 4) in Section 
S1 of the Supporting Information. Burnham and White (2002) demon-
strated that their approximate random effects estimator worked well 
for the Cormack–Jolly–Seber model with a single temporal random 
effect on survival probability, but, as an approximate method, it is not 
immediately clear whether or not its simple extension to N(N − 1) indi-
vidual random effects for the state transition probabilities in a N-state 
HMM would also perform well. One known issue with this approach 
is that it becomes unreliable when any �m,i,j for the fixed effects model 
(Equation 2) is estimated near 0 or 1, and one could suspect that such 
boundary issues will become more likely as M increases, Tm decreases 
and N increases. Bayesian analogues to the two-stage approach of 
Burnham and White (2002) could be less susceptible to these bound-
ary issues (Hooten et al., 2016, 2019).

More recently, the R package Template Model Builder (TMB; 
Kristensen et al., 2016), which relies on reverse-mode automatic dif-
ferentiation and the Laplace approximation for high-dimension inte-
grals, has made ML inference for continuous random effects much 
more tractable. TMB is less ‘plug-and-play’ than the approach of 

Burnham and White (2002) because it currently requires advanced 
programming skills to custom code the HMM likelihood (Equation 4) 
based on a C++ template. In addition, little is currently known about 
how well the Laplace approximation performs for mixed HMMs or 
for sample sizes typical of animal telemetry studies (see Albertsen 
et  al.,  2015; Auger-Méthé et  al.,  2017; Benhaiem et  al.,  2018; 
Whoriskey et al., 2017 for relevant applications). Nevertheless, con-
tinuous random effect HMMs implemented using TMB can be fitted 
exceptionally fast, are amenable to more complex correlation struc-
tures and likely do not suffer from the same boundary issues as the 
approximate approach of Burnham and White (2002). These promis-
ing capabilities of TMB facilitate large-scale simulation experiments 
for comparing the performance of these different approaches for 
modelling individual variation in the hidden state process.

3  | SIMUL ATION STUDY

3.1 | Simulation methods

Based on two-state HMMs commonly used in analyses of telemetry 
data (e.g. Franke et al., 2004; Morales et al., 2004), I performed a 
simulation experiment to evaluate the performance of models that 
include no effects, fixed effects, discrete random effects and contin-
uous random effects to account for individual heterogeneity in state 
transition probabilities. Two sets of simulations were performed 
(see Table 1). In the first (hereafter ‘without covariates’), the simu-
lated data included no measurable individual-level covariates and 
the fitted models included no explanatory covariate terms for the 
state transition probabilities. In the second (hereafter ‘with covari-
ates’), the simulated data included a measurable individual-level co-
variate and the models were fitted both with and without terms for 
the covariate effect on the state transition probabilities. R (R Core 
Team, 2020) code for simulating data and fitting all models can be 
found in McClintock (2021).

3.1.1 | Without covariates

Data were simulated under five levels of individual heterogeneity: 
(a) no individual heterogeneity (�1,2 = �2,1 = 0); (b) continuous ran-
dom effects with ‘moderate’ heterogeneity 

(
�1,2 = �2,1 = 0.202

)
;   

(c) continuous random effects with ‘high’ heterogeneity (
�1,2 = �2,1 = 0.416

)
; (d) K = 2 discrete random effects with �(1) = 0.6,  

�
(1)

1,2
= 0.5, � (1)

2,1
= 0.25, � (2)

1,2
= 0.25 and � (2)

2,1
= 0.5 (hereafter ‘mixA’); 

and (e) K  =  2 discrete random effects with �(1) = 0.6, � (1)
1,2

= 0.75,  
�
(1)

2,1
= 0.75, �

(2)

1,2
= 0.25 and �

(2)

2,1
= 0.25 (hereafter ‘mixB’). For 

the zm,i,j
iid
∼�

(
�i,j, �

2
i,j

)
 continuous random effect scenarios with 

�1,2 = �2,1 ∈ {0, 0.202, 0.416}, I included two levels for state per-
sistence: (a) logit− 1

(
�1,2

)
= logit− 1

(
�2,1

)
= 0.5 (hereafter ‘lower’ 

state persistence), corresponding to �m,1,1 = �m,2,2 = 0.5 when 
�1,2 = �2,1 = 0; and (b) logit− 1

(
�1,2

)
= logit− 1

(
�2,1

)
= 0.25 (hereaf-

ter ‘higher’ state persistence), corresponding to �m,1,1 = �m,2,2 = 0.75 
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when �1,2 = �2,1 = 0. Scenarios with lower state persistence and 
�1,2 = �2,1 = 0.202 correspond to a mean of 0.5 and standard devia-
tion of 0.05 on the state transition probability scale, whereas those 
with lower state persistence and �1,2 = �2,1 = 0.416 correspond to 
a mean of 0.5 and standard deviation of 0.10. Scenarios with lower 
persistence and no individual heterogeneity are equivalent to gen-
erating data from a (non-Markov) finite mixture model and could 
be viewed as a ‘worst-case scenario’ in terms of serial correlation in 
the hidden state process. For the discrete random effect scenarios, 
‘mixA’ can be considered less heterogeneous than ‘mixB’ (because 
the ‘mixA’ mixtures are more similar). All parameter values were cho-
sen to keep state transition probabilities roughly between 0.1 and 
0.9 (see Figure S1), thereby helping to reduce potential parameter 
boundary issues during model fitting and prevent either state from 
being relatively rare (Beyer et  al.,  2013). For simplicity, data were 
generated with �m = (0.5, 0.5) for m = 1, …, M in all scenarios.

I limited simulated observations to a single data stream gener-
ated from a (state-dependent) gamma distribution for ‘step length’, 
ym,t |St = s ∼ Γ

(
�y
s , �

y
s

)
 for St ∈ {1, 2}, with varying degrees of overlap 

between the states based on the mean (�y
s) and standard deviation (�ys). 

These correspond to ‘little’ overlap 
(
�y

1
= 1, �y

2
= 10, �y

1
= 1, �y

2
= 2

)
,   

‘some’ overlap 
(
�y

1
= 5, �y

2
= 10, �y

1
= 2, �y

2
= 2

)
 and ‘much’ over-

lap (�y

1
= 5, �y

2
= 10, �y

1
= 2, �y

2
= 6; Figure  1). The Kolmogorov–

Smirnov test statistics for these distributions are, respectively, 
0.99, 0.80 and 0.49, where 0 indicates the distributions are identical 
and 1 indicates no overlap. Standard HMMs are known to perform 
poorly when the state-dependent distributions overlap (e.g. Beyer 
et al., 2013; Jonsen, 2016), but I included these scenarios to assess 
whether or not the inclusion of individual effects somehow alters 
this behaviour. While movement HMMs typically include two data 
streams (step length and turn angle), the number of data streams 
is arbitrary for my purposes. I therefore chose a single data stream 
to minimize the number of observations and parameters to be es-
timated, thereby reducing run times and facilitating interpretation 
across a large number of simulated scenarios.

Simulated sample sizes were chosen based on animal-borne telem-
etry studies that typically tend to include relatively few individuals, 

but relatively long time series for each individual (e.g. DeRuiter 
et al., 2017; Isojunno et al., 2017; Langrock et al., 2012; McClintock 
et  al.,  2013; Morales et  al.,  2004; Towner et  al.,  2016). I included 
five levels for the number of individuals M ∈ {5, 15, 30, 50, 100} and 
three levels for the number of observations per individual (30–250, 
110, 250). For scenarios with 30–250 observations per individual, 
individuals were assigned to one of Tm ∈ {30, 50, 70, 150, 250} in 
equal proportions such that 

∑
M
m= 1

Tm is identical for scenarios with 
30–250 or 110 observations per individual. I limited Tm ≤ 250 both 
to reduce computation time and to reflect the lengths of time se-
ries in many prominent applications of animal movement HMMs 
(e.g. Jonsen et al., 2005; Morales et al., 2004) and mixed HMMs (e.g. 
DeRuiter et al., 2017; Isojunno et al., 2017; Towner et al., 2016).

For each of the 360 scenarios examined, up to nine models 
were fitted to 400 simulated datasets using maximum likelihood 
methods. These models included two-state HMMs with no indi-
vidual effects (‘null’; Equation 1), individual fixed effects (‘fixed’; 
Equation 2), discrete random effects with K ∈ {2, 3, 4, 5, 6} mix-
tures (‘mix2’, ‘mix3’, ‘mix4’, ‘mix5’ and ‘mix6’, respectively; Equation 
3), approximate continuous random effects estimated from the 
‘fixed’ model based on Burnham and White (2002; ‘BW’), and 
continuous random effects using numerical integration (‘TMB’; 
Equation 4) for the state transition probabilities. To reduce simula-
tion run times, discrete random effect models with K = 5 or K = 6 
were only fitted if the K  −  1 mixture model resulted in a lower 
bias-corrected Akaike's Information Criterion (AICc; Burnham & 
Anderson, 2002) value relative to the K − 2 mixture model. Models 
with K = 5 or K = 6 are therefore only included in model selection 
and multimodel inference results (see Section  3.1.4). Simulated 
data were generated using the simData function in R package mo-
mentuHMM (version 1.5.2; McClintock & Michelot, 2018). The R 
package TMB (Kristensen et al., 2016) was used for fitting model 
TMB, and the momentuHMM function fitHMM was used for fit-
ting all other models. The momentuHMM function randomEffects 
was used for implementing the BW approach based on the maxi-
mum likelihood estimates of the fixed effects model returned by 
fitHMM.

TA B L E  1   Design points for simulation scenarios with and without measurable covariate effects based on the degree of overlap in the 
state-dependent distributions, the support of the random effects (continuous or discrete), the number of individuals and the length of 
the individual time series. Scenarios without covariates and continuous random effects included logit− 1(�1,2) = logit− 1(�2,1) ∈ {0.5, 0.25} 
(‘lower’ and ‘higher’ state persistence, respectively). Scenarios with covariates and continuous random effects included 
logit− 1(�0,1,2) = logit− 1(�0,2,1) ∈ {0.5, 0.25} and (�1,1,2, �1,2,1) ∈ {(0, 0), (0.5, −0.5)}. There were therefore 3 × (2 × 3 + 2) × 5 × 3 = 360 
scenarios without covariates and 3 × (2 × 2 × 3) × 5 × 3 = 540 scenarios with covariates

Simulation 
scenario Overlap

Random effects

No. individuals 
(M)

Time-series 
length (Tm)

Continuous Discrete

State 
persistence (�1,1,2, �1,2,1) σ

Without 
covariates

Little, some, 
much

Lower, higher 0, 0.202, 0.416 mixA, mixB 5, 15, 30, 50, 100 30–250, 110, 250

With covariates Little, some, 
much

Lower, higher (0, 0), (0.5, −0.5) 0, 0.202, 0.416 5, 15, 30, 50, 100 30–250, 110, 250
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3.1.2 | With covariates

To investigate estimator performance in the presence of a (measur-
able) continuous-valued individual covariate, I performed an additional 
set of simulations with logit− 1

(
�0,1,2

)
= logit− 1

(
�0,2,1

)
∈ {0.5, 0.25}, 

�1,2 = �2,1 ∈ {0, 0.202, 0.416}, M ∈ {5, 15, 30, 50, 100}, and the same 
three levels for the degree of overlap (‘little’, ‘some’, ‘much’) and the 
number of observations per individual (30–250, 110, 250). Two covari-
ate scenarios were included: (a) �1,1,2 = �1,2,1 = 0 and (b) �1,1,2 = 0.5 and 
�1,2,1 = −0.5, where zm,i,j

iid
∼�

(
�0,i,j + xm�1,i,j, �

2
i,j

)
 and xm is a measura-

ble individual covariate drawn from a standard normal distribution. The 
covariate scenarios with �1,1,2 = �1,2,1 = 0 were included to investigate 
the potential for inferring spurious covariate effects from the differ-
ent models, whereas the scenarios with �1,1,2 = 0.5 and �1,2,1 = −0.5 
have �m,1,2 and �m,2,1 increasing and decreasing with xm, respectively 
(Figure S2). For these 540 scenarios each consisting of 400 simulated 
datasets, I fitted the fixed effect model (with no covariate effects) and 
the null, finite mixture and continuous random effect models both with 

and without terms for the covariate effects (up to 17 models total). For 
the finite mixture models, each of the K mixtures included context-
specific �(k)

0,i,j
 and �(k)

1,i,j
 parameters (e.g. DeRuiter et al., 2017), from which 

population-level covariate effects were derived for comparisons with 
other models (see Section S2.1.3 in Supporting Information).

3.1.3 | Estimator performance

For both sets of simulations, estimator performance for 
� =

(
�1,2, �2,1

)
, Γm =

(
�m,i,j

)
 for m = 1, …, M, �y =

(
�y

1
, �y

2

)
 and 

�y =
(
�y
1
, �y

2

)
 was evaluated based on mean bias, 95% confidence 

interval coverage and standard error (or confidence interval 
length). For the set of simulations with covariates, summaries 
of estimator bias and precision for �1,1,2 and �1,2,1 were based on 
medians because with smaller sample sizes the means for these 
(unconstrained) parameters could be heavily influenced by a small 
number of outliers when estimated state transition probabilities 

F I G U R E  1   State-dependent 
observation distributions for ‘step length’ 
in simulated scenarios with ‘little’ (top 
panel), ‘some’ (middle) and ‘much’ (bottom) 
overlap
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fell on the boundary of the parameter space. I examined the 
performance of the Viterbi algorithm for global state decoding 
(e.g. Zucchini et  al.,  2016) while accounting for state classifica-
tion agreement entirely due to chance using the Kappa statistic 
(Beyer et  al.,  2013; Congalton,  1991), which ranges from 0 (en-
tirely chance agreement) to 1 (perfect agreement not attribut-
able to chance). I also evaluated the proportion of estimated local 
state probabilities (based on the forward–backward algorithm; 
e.g. Zucchini et al., 2016) with at least 0.50 and 0.20 probability 
assigned to the true state: 

∑
M
m= 1

∑ Tm
t= 1

I
�
pm,t,sm,t ≥ q

�
∕
∑

M
m= 1

Tm, 
where I() is the indicator function, pm,t,j is the estimated probability 
of state j for individual m at time t, sm,t is the true state for indi-
vidual m at time t, and q ∈ {0.50, 0.20}. To facilitate comparisons 
across models, individual-level estimates for state transition prob-
abilities were derived from the maximum likelihood estimates for 
the finite mixture models. For global state decoding and local state 
probabilities, I used modified Viterbi and forward–backward algo-
rithms accommodating finite mixtures (see Sections S2.1.3–S2.1.5 
in Supporting Information). For the continuous random effect mod-
els, the standard Viterbi and forward–backward algorithms were 
used based on the shrinkage estimates for each individual 

(
�̂m,i,j

)
.

3.1.4 | Model selection and multi-model inference

Standard model selection criteria are often used to choose among 
competing HMMs (e.g. DeRuiter et al., 2017; Isojunno et al., 2017; 
Pohle et  al.,  2017). For both sets of simulations, I evaluated the 
performance of AICc in selecting among competing models for in-
dividual heterogeneity in state transition probabilities by calculat-
ing the standard AICc for the null, fixed and finite mixture models, 
the conditional AICc for the BW random effects model (Burnham 
& White,  2002), and the marginal AICc for the TMB random ef-
fects model using n =

∑
M
m= 1

Tm as the sample size. While the BW 
conditional AICc is comparable with the AICc for the null, fixed 
and finite mixture models, it is unclear how well the marginal AICc 
for TMB will perform for selecting among fixed and random ef-
fect models (e.g. Bolker et al., 2009; Gimenez & Choquet, 2010). 
I therefore also performed a likelihood ratio test (LRT) comparing 
the null and TMB models as suggested by Gimenez and Choquet 
(2010). To my knowledge, there is currently no straightforward 
way to calculate a conditional AIC even for simpler (non-Markov) 
random effect models fitted in TMB; for example, the TMB-based 
generalized linear mixed modelling R package glmmTMB (Brooks 
et  al.,  2017) only provides marginal AIC. Multi-model inference 
can be used to account for model selection uncertainty, and I cal-
culated model-averaged estimates, standard errors and 95% con-
fidence intervals for Γm, �y and �y based on AICc weights (Burnham 
& Anderson, 2002) for four sets of candidate models: (a) null and 
finite mixture models (hereafter ‘modMix’); (b) null, fixed and fi-
nite mixture models (‘modFix’); (c) null, fixed, finite mixture and 
BW models (‘modBW’) and (d) null, finite mixture and TMB mod-
els (‘modTMB’). For simulations with covariates, model-averaged 

estimates for �1,i,j were calculated from AICc weights for the mod-
els that included the covariate effect.

3.1.5 | Nested loop plots

Simulation scenario results are presented using the nested loop plot 
of Rücker and Schwarzer (2014). Similar to a time-series plot, nested 
loop plots serve to present a large number of simulation results by 
putting all scenarios into a lexicographical order and arranging them 
consecutively along the horizontal axis. The quantity of interest (e.g. 
bias, coverage) is then plotted on the vertical axis. The decision on 
how to nest the results is subjective, with the top level of nesting 
receiving the most emphasis. For BW and modBW, results are only 
reported for those scenarios where at least 50 of the simulated data-
sets yielded admissible Γm estimates from the fixed effects model, 
where I considered any �𝛾m,i,j < 0.01 or �𝛾m,i,j > 0.99 as inadmissible.

3.2 | Simulation results

3.2.1 | Summary

Given the large amount of information afforded by so many simula-
tion scenarios, I first provide a brief summary of the main findings 
before delving into more detail on the simulation results without 
(Section 3.2.2) and with (Section 3.2.3) covariates. As expected, 
across all simulated scenarios, the data-generating model tended 
to perform better in terms of state assignment and parameter esti-
mation as sample sizes (M and Tm) increased, the degree of overlap 
in state-dependent distributions decreased, and state persistence 
increased. There was generally little difference in state assignment 
among the null, fixed and random effect models, indicating mixed 
HMMs did not improve classification of the hidden state process. 
Owing to negative bias and poor precision, the continuous ran-
dom effect variance parameters (σ) generally proved difficult to 
reliably estimate except with larger sample sizes (e.g. M  >  50). 
While little difference was found between the various models in 
terms of state-dependent distribution parameter (μ y, σ y) estima-
tion, discrete random effect models exhibited poor coverage of 
state transition probabilities (�m,i,j) under continuous variation, and 
continuous random effect models exhibited inflated standard er-
rors for �m,i,j under discrete variation. Model selection and model 
averaging based on AICc generally worked well when the data-
generating model was included in the candidate model set, but it 
did little to mitigate model misspecification in the ‘modMix’ and 
‘modFix’ model sets for the continuous variation scenarios. Finally, 
in the ‘with covariates’ scenarios, discrete random effect models 
again proved to be a poor (and potentially misleading) approxima-
tion for continuous variation, often resulting in a substantial re-
duction in confidence interval coverage for the covariate effects 
(�1,i,j) and, in some cases, less accurate state assignment relative to 
the other models.
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3.2.2 | Without covariates

State assignment
The degree of overlap between the (state-dependent) observa-
tion distributions was by far the most important factor for state 
estimation. The performance of each model declined as overlap 
increased, but, within each level of overlap (‘little’, ‘some’, ‘much’), 
there was little difference among the null, fixed and random effect 
models (Figure 2; Table S1). When there was ‘some’ or ‘much’ over-
lap, performance tended to slightly improve as state persistence 
increased (Figure S3) and as individual heterogeneity, the number 
of individuals and the lengths of the time series increased. After 
accounting for chance agreement, the Viterbi algorithm for global 
state decoding produced an average correct state assignment of 
99% (range: 99%–99%) for ‘little’ overlap, 82% (range: 76%–84%) 
for ‘some’ overlap and 51% (range: 40%–57%) for ‘much’ overlap 
across all scenarios and models. The proportion of correct state 
assignments using the Viterbi algorithm therefore closely corre-
sponded to the degree of overlap in the state-dependent distri-
butions as calculated by the Kolmogorov–Smirnov test statistic 
(respectively 0.99, 0.80 and 0.49). Estimated state probabilities 
tended to assign at least 0.5 probability to the true state >75% 
of the time (and at least 0.20 probability to the true state >90% 
of the time) across all scenarios and models, indicating local state 
probabilities are better able to account for uncertainty in state 
assignment that is attributable to overlap in state-dependent ob-
servation distributions. While the discrete random effect models 
tended to assign less probability to the true state with ‘some’ or 
‘much’ overlap, the inclusion of individual fixed, discrete random 
or continuous random effects generally made little difference in 
local state probabilities relative to the null model.

Random effect variance
Models that included continuous random effects (BW and 
TMB) generally performed best in terms of bias, coverage and 
confidence interval length with ‘little’ overlap, ‘higher’ state 
persistence (logit− 1(�1,2) = logit− 1(�2,1) = 0.25), ‘high’ hetero-
geneity (�1,2 = �2,1 = 0.416) and larger sample sizes (Table  2; 
Figure  3). With percent confidence interval lengths (calculated 
as 100(�̂upper − �̂lower)∕� for 𝜎 > 0) for individual scenarios rang-
ing from 81% (M = 100, Tm = 250 and ‘little’ overlap) to 5,139% 
(M = 5, Tm = 30–250 and ‘much’ overlap), both estimators tended 
to produce very wide confidence intervals for σ as the number of 
individuals decreased, the length of the time series decreased and 
the degree of overlap increased. With ‘little’ overlap and few in-
dividuals, BW tended to perform better than TMB, and, because 
its point estimates and confidence intervals can include zero, 
BW also tended to perform better than TMB for scenarios with 
no heterogeneity (i.e. �1,2 = �2,1 = 0; Figure 3). However, with in-
dividual heterogeneity and ‘some’ or ‘much’ overlap, BW tended 
to underperform relative to TMB as the number of individuals in-
creased and the length of the time series decreased, particularly 
when there was ‘lower’ state persistence. Under these conditions, 

the fixed model increasingly tended to estimate at least one state 
transition probability near a boundary, thereby making it unsuit-
able for the BW approach. This likely explains the increased nega-
tive bias for BW with ‘some’ and ‘much’ overlap, as the subset of 
simulated datasets that produced admissible Γm estimates from 
the fixed model will exhibit truncated tails for the random effect 
distributions (and hence smaller σ). However, the fact that the bias 
tended to be greater for �2,1 than for �1,2 also suggests that the 
sampling variance–covariance matrix approximation of Burnham 
and White (2002) might be inadequate in accounting for the ad-
ditional state uncertainty under scenarios with non-negligible 
overlap. TMB therefore appears to be more robust to overlap in 
state-dependent observation distributions and shorter time series 
with ‘moderate’ to ‘high’ heterogeneity, but, owing to negative bias 
and poor precision, neither TMB nor BW performed particularly 
well except in scenarios with ‘little’ overlap, ‘high’ heterogeneity 
and at least M = 50 individuals.

State transition probabilities
All models generally exhibited little bias in state transition prob-
abilities with ‘little’ or ‘some’ overlap, but performance was more 
variable in terms of confidence interval coverage and precision 
(Table  3; Figure  4). Although the overall mean bias across all Γm 
was close to zero with ‘much’ overlap (Table 3), this is somewhat 
misleading because the overlap tended to induce increasing nega-
tive bias for �m,1,2 and positive bias for �m,2,1 as the number of in-
dividuals decreased, particularly for the finite mixture scenarios 
(‘mixA’ and ‘mixB’) and the continuous random effect scenarios 
with lower state persistence (Figure  S4; Tables  S2–S3). Despite 
the null and finite mixture models generally exhibiting little bias 
under continuous variation, it is worth noting that by construction 
these models are not able to correctly capture the individual-level 
state transition probabilities (as indicated by poor coverage and 
underestimation of uncertainty), and other measures of estima-
tor performance (such as absolute bias or mean squared error) 
would perhaps better reflect this. With ‘little’ overlap, the null 
model tended to perform best with no heterogeneity and BW 
tended to perform best with ‘moderate’ to ‘high’ heterogeneity 
because TMB tended to underestimate uncertainty (except when 
M = 100). Consistent with its performance for σ estimation, BW 
did not perform as well as TMB under ‘some’ or ‘much’ overlap, 
often exhibiting larger variances and asymmetric biases for �m,1,2 
and �m,2,1 (albeit with somewhat better coverage).

As expected, the mix2 model generally performed best in the 
‘mixA’ and ‘mixB’ finite mixture scenarios, but coverage was increas-
ingly below the nominal 95% as the number of individuals increased, 
the length of time series decreased and the degree of overlap in-
creased. Underestimation of uncertainty by the mix2 model was un-
expected under these scenarios, but the finite mixture models did 
not appear to always be able to adequately distinguish individual-
level variability from sampling variability when estimating mixture 
probabilities for individuals with shorter time series. However, the 
mix2 model was less prone to reduced coverage for shorter time 
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F I G U R E  2   Nested loop plots for the proportion of Viterbi-decoded states that were correctly classified after accounting for chance 
agreement (top) and the proportion of estimated state probabilities in which the true state received at least 0.50 (middle) or 0.20 (bottom) 
probability from 225 simulated scenarios without covariate effects. Scenarios are ordered from outer to inner loops by the degree of 
state-dependent distribution overlap (‘Overlap’), individual heterogeneity (‘Sigma’), number of individuals (‘nbInds’) and length of time series 
(‘nbObs’). Comparisons are for the null (light green), fixed (dark green), mix2 (pink), mix3 (light orange), mix4 (dark orange), BW (blue) and 
TMB (purple) models. Continuous random effect scenarios are limited to those with ‘higher’ state persistence
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F I G U R E  3   Nested loop plots for BW (blue) and TMB (purple) mean bias (top), 95% confidence interval coverage (middle) and confidence 
interval length (bottom) for �1,2 and �2,1 from 135 simulated scenarios without covariates that included ‘higher’ (left column) or ‘lower’ 
(right column) state persistence. Missing values for BW indicate scenarios with <50 datasets producing admissible estimates for the state 
transition probabilities from the fixed effects model. Coverage for TMB was 0% for all scenarios with �1,2 = �2,1 = 0
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series under the more distinct ‘mixB’ scenario with ‘little’ or ‘some’ 
overlap, so this behaviour also appears to depend on the specific 
characteristics of the mixture distributions. All models except the 
null generally performed well with data generated under K = 2 finite 
mixtures (albeit with mean standard errors 3.2, 3.5 and 3.7 times 
larger than mix2 for the TMB, BW and fixed models, respectively), 
but the finite mixture models did not generally perform well with 
data generated under continuous random effects. Under these sce-
narios, the discrete random effect models tended to perform slightly 
better in terms of coverage as the number of mixtures increased, 
but coverage was still well below nominal (as low as 32% with K = 4) 
and tended to decrease as sample sizes increased (Table 3; Figure 4).

State-dependent distributions
There was not much variability in the performance of the models 
when estimating state-dependent probability distribution param-
eters 

(
�y

1
, �y

2
, �y

1
, �y

2

)
. With ‘little’ overlap, all models performed 

well (see Figures S7–S12; Tables S4–S7). With smaller sample sizes 
under ‘some’ or ‘much’ overlap, bias tended to increase and coverage 
tended to decrease. Under these scenarios, increasing overlap gener-
ally resulted in positive bias for �y

1
, large positive bias for �y

2
, positive 

bias for �y
1
 and negative bias for �y

2
, particularly for the continuous 

random effect scenarios with lower state persistence (Figures  S8, 
S9, S11 and S12). Although coverage remained near nominal under 
these scenarios, none of the models were able to recover unbiased 
point estimates for all of the state-dependent distribution param-
eters. Thus, model performance was primarily driven by the degree 
of overlap, and the inclusion of individual fixed, discrete random or 
continuous random effects generally made little difference in state-
dependent distribution parameter estimation.

Model selection and multi-model inference
When the candidate model set was limited to null and finite mixture 
models (‘modMix’), AICc model selection performed well for data 
generated under no heterogeneity (�1,2 = �2,1 = 0) and the finite 
mixture scenarios, with the generating model (null and mix2, respec-
tively) generally receiving the most AICc support (Figures S13–S14) 
and the modMix model-averaged parameter estimates performing 
well (Figures S5–S10; Table 3; Tables S2–S7). However, with moder-
ate to high individual heterogeneity (𝜎1,2 = 𝜎2,1 > 0), AICc tended to 
favour models with increasingly more finite mixtures as individual 
heterogeneity and sample sizes increased, with poor coverage of 
model-averaged Γm estimates. When the candidate set of models 
was expanded to include the fixed model (‘modFix’), performance 
was similar for the no heterogeneity and finite mixture scenarios, 
but the fixed model tended to receive greater support as individual 
heterogeneity increased, sample sizes increased and the degree of 
overlap decreased (Figures S13 and S14), resulting in improved (but 
still less than nominal) performance of the modFix model-averaged 
Γm estimates (Figures S5 and S6; Table 3; Tables S2 and S3).

For the full candidate model set including the null, fixed, finite 
mixture and BW models (‘modBW’), AICc model selection generally 
performed well across most simulation scenarios, but support for M
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F I G U R E  4   Nested loop plots for mean bias (top row), 95% confidence interval coverage (middle row) and standard error (SE; bottom 
row) for �m,1,2 and �m,2,1 from simulated scenarios without covariates, including 135 scenarios with ‘higher’ state persistence (left column) 
and 90 scenarios with ‘mixA’ or ‘mixB’ finite mixtures (right column). Missing values for BW indicate scenarios with <50 datasets producing 
admissible estimates
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the generating model tended to decline with smaller sample sizes 
and higher degrees of overlap (Figures S13 and S14). In terms of Γm 
estimation, modBW generally exhibited less bias and greater pre-
cision than BW, but performance relative to TMB declined with 
moderate or high heterogeneity as sample sizes increased, the de-
gree of overlap increased and state persistence decreased (Figure 4; 
Figures S5 and S6; Table 3; Tables S2 and S3). However, under these 
scenarios, modBW tended to perform better than BW, indicating 
that AICc model averaging can help mitigate poorer performance of 
BW in scenarios with ‘some’ or ‘much’ overlap that tend to produce 
inadmissible Γm estimates from the fixed model.

For the ‘modTMB’ candidate set, the marginal AICc performed 
better than I expected, but proved to be conservative when selecting 
among fixed and random effect models for scenarios with moderate 
or high individual heterogeneity (Figures S15 and S16). Under these 
scenarios, AICc tended to favor the null model as individual hetero-
geneity decreased, the degree of overlap increased and sample sizes 
decreased. Unlike modBW, modTMB generally reduced coverage of 
Γm estimates relative to TMB (Figure 4; Figures S5 and S6; Table 3; 
Tables S2 and S3). Likelihood ratio tests between the null and TMB 
models were less conservative and not as sensitive to the degree 
of overlap and sample sizes under these scenarios (Figures S15 and 
S16). However, LRTs do not provide a means for selecting between 
discrete and continuous random effect models, and LRTs tended to 
strongly favour TMB over the null model when data were generated 
from finite mixtures (scenarios ‘mixA’ and ‘mixB’).

3.2.3 | With covariates

For the set of simulations examining measurable individual covari-
ate effects, performance patterns were similar to the set of simu-
lations without covariate effects (see Section  3.2.2) for the null, 
fixed, finite mixture and continuous random effect models in terms 
of state assignment, parameter estimation and AICc model selec-
tion (see Table S8; Figures S17–S25). Both BW and TMB performed 
well in estimating the covariate effects (Figure  5), although for 
(�1,1,2, �1,2,1) = (0.5, −0.5) with smaller sample sizes and moderate 
to high heterogeneity, BW exhibited a small negative bias for �1,1,2 
and a small positive for �1,2,1 that was mitigated by AICc model av-
eraging, but became worse as state-dependent distribution overlap 
increased (Figures S26 and S27; Tables S9 and S10).

While the finite mixture models performed better than the null 
model in terms of coverage of �1,i,j, they generally exhibited greater 
bias and performance became increasingly poor as individual hetero-
geneity increased. Coverage of �1,i,j for the discrete random effect 
models increased with the number of mixtures, but it was still well 
below nominal with K = 4 mixtures under higher levels of heteroge-
neity and ‘little’ overlap (Figure 5). Coverage for the discrete random 
effect models actually tended to become worse as sample sizes in-
creased and overlap decreased (Figure S26; Tables S9 and S10). Under 
the ‘best’ data-generating scenarios with ‘little’ overlap, M  =  100, 
Tm = 250, finite mixture models in some cases reduced coverage of 

�1,i,j by >37% relative to the TMB model. In a handful of small sample 
scenarios with 𝜎i,j > 0 where finite mixture models had near-nominal 
coverage, this was attributable to large standard errors (up to 101% 
larger than the TMB model). Because coverage of the finite mixture 
models was often poor when �1,i,j = 0, there was clearly a greater risk 
of Type I error (i.e. inferring a covariate effect when there is none) 
when discrete random effects were used to account for continuous 
individual variation. With AICc for the modMix candidate set tending 
to support models with both covariate effects and a large number of 
mixtures (Figure S25), model averaging did little to mitigate this risk 
under these scenarios (Figure S27; Tables S9 and S10).

4  | E X AMPLE: LONG -FINNED PILOT 
WHALES

To help put my findings in context and illustrate some potential 
challenges that practitioners may encounter when applying mixed 
HMMs to animal telemetry data, I revisit a N  =  4 state multivari-
ate mixed HMM analysis of long-finned pilot whale biotelemetry 
data originally performed by Isojunno et al.  (2017). Full details can 
be found therein, but the data consist of 11 data streams believed 
to characterize ‘exploratory’ (state 1), ‘foraging’ (state 2), ‘crowded’ 
(state 3) and ‘directed’ (state 4) diving behaviours for M = 15 individ-
uals, with Tm ranging from 50–254 (median = 148). To limit the num-
ber of models in the candidate set, Isojunno et al. (2017) first used 
model selection criteria to determine N = 4 was the optimal number 
of states under the null (K = 1) model, then used model selection 
criteria to choose among finite mixture random effect models (up to 
K = 3) and finally used this model to investigate individual and time-
dependent explanatory covariates (e.g. size class, sonar exposure) 
for the state transition probabilities.

I focus on the second stage of this analysis, where they used 
AIC and the Bayesian Information Criterion (BIC; e.g. Burnham & 
Anderson, 2002) to select the best-supported random effect model 
for subsequent covariate modelling and model selection. They found 
conflicting results based on AIC and BIC, with AIC favouring K = 3 
mixtures (5.2 unit decrease in AIC relative to the null model) and 
BIC strongly favouring the null model with K = 1. Faced with this 
apparent conundrum, Isojunno et al. (2017) sided with BIC to ‘avoid 
selection of overly complex models’ given the relatively ‘weak sup-
port for any random effects’ afforded by AIC, and proceeded with 
covariate model fitting and selection under the null model (K = 1) 
with no individual random effects on state transition probabilities.

To explore this further, I re-analysed the pilot whale data by fit-
ting the null, fixed, finite mixture (up to K = 4), and TMB models using 
the same methods described in Section 3, but with δ m assumed to 
be the stationary distribution (as in Isojunno et  al.,  2017) instead 
of freely estimated (for data and R code, see McClintock,  2021). 
In addition to AICc, I calculated standard BIC for the null, fixed 
and finite mixture models, as well as the marginal BIC for TMB, 
using n =

∑
M
m= 1

Tm  =  2,314 for the sample size (as in Isojunno 
et al., 2017). Unfortunately, the fixed model yielded Γm estimates on 
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F I G U R E  5   Nested loop plots for median bias (top row), mean 95% confidence interval coverage (middle row) and median standard 
error (SE; bottom row) for covariate effects �1,1,2 and �1,2,1 from 90 simulated scenarios with ‘little’ overlap, ‘higher’ state persistence, and 
(�1,1,2, �1,2,1) ∈ {(0, 0), (0.5, −0.5)}. Scenarios are ordered from outer to inner loops by the data-generating values for the covariate effect 
(‘Covariate’, where ‘zero’ = (0, 0), ‘non-zero’ = (0.5, −0.5)), individual heterogeneity (‘Sigma’), number of individuals (‘nbInds’) and length of 
time series (‘nbObs’)
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the boundary, thereby making this dataset inadmissible for the BW 
model. With boundary issues becoming more likely as the number 
of individuals increases, the lengths of time series decrease and the 
number of states increases, this highlights a key limitation of the BW 
approach in practice.

Despite due diligence by Isojunno et al.  (2017) in exploring the 
likelihood surface using 50 sets of randomly drawn starting values 
for optimization, I found that their finite mixture models failed to 
converge to global maxima. Relative to those reported by Isojunno 
et al.  (2017), my fits increased the log likelihood for the mix2 and 
mix3 models by 14.6 and 36.7 units, respectively (Table 4). This high-
lights a common pitfall when attempting to fit complex mixed HMMs 
to relatively small datasets, where flat likelihood surfaces, local min-
ima and numerical instability can become increasingly problematic 
as the number of states and/or parameters increase. Indeed, it is 
certainly possible that my fits also failed to converge to the global 
maxima, although I was unable to improve them any further using 
hundreds of random normal perturbations of the maximum likeli-
hood estimates as starting values for the optimization.

Both AICc and BIC now favor TMB (Table  4), and the LRT be-
tween the null and TMB model with N (N − 1) = 12 random effects 

also favors TMB (
∑

12
r= 0

2− 12

⎛⎜⎜⎝
12

r

⎞⎟⎟⎠
�2
r
= 101.4, p  <  0.001). Thus, 

whether one prefers AICc, BIC or LRT, there is clearly evidence of 
individual variation in the state transition probabilities that is not 
well explained by null or finite mixture models. As could be expected 
for relatively short time series with N = 4 states, some of the random 
effect variance estimates were imprecise (Table 5), particularly for 
state transitions that were relatively rare (Figure 6). Evidence of indi-
vidual variation was greatest for transitions from the ‘exploratory’ 
and ‘directed’ states, and, based on the results of Isojunno 
et al. (2017), this variation was not well explained by any of the indi-
vidual covariates included in their analysis. However, it is possible 
that these explanatory covariates could now better account for any 
additional variation that is not already well explained by the individ-
ual random effects.

Although I have found new evidence of individual variation in 
the state transition probabilities, accounting for this heterogeneity 
made little impact on state assignment and estimated activity bud-
gets. Consistent with my simulation results (see Figure 2), Viterbi-
decoded states for the null and TMB models were in agreement 94% 

of the time. However, while ‘foraging’ and ‘crowded’ state assign-
ments were largely unchanged, estimated overall activity budgets 
changed slightly for the ‘exploratory’ state (36% for null, 33% for 
TMB) and the ‘directed’ state (36% for null, 40% for TMB).

I do not intend to be critical of Isojunno et al. (2017) for limiting 
their candidate model set to finite mixtures or failing to achieve 
convergence for these complex models. They focused on discrete 
random effect models presumably because maximum likelihood 
inference for HMMs with continuous random effects has histor-
ically been very difficult (e.g. Altman, 2007; Langrock et al., 2012; 
Schliehe-Diecks et al., 2012). Discrete random effects have been 
promoted as a practical alternative for movement HMMs (e.g. 
DeRuiter et al., 2017; McKellar et al., 2015; Towner et al., 2016), 
and the potential for TMB (Kristensen et  al.,  2016) as a tool to 
overcome such problems has only recently begun to be recognized 
by movement ecologists (e.g. Auger-Méthé et al., 2017). False con-
vergence to a local maximum is notoriously difficult to assess, and 
it was entirely due to luck that my random draws of starting values 
for the finite mixture models happened to converge to parame-
ter estimates with higher likelihood. Finally, as state assignment 
and calculating activity budgets were the primary purposes of the 
mixed HMM analysis performed by Isojunno et  al.  (2017), their 
main results and conclusions would likely be largely unaltered if 
they were instead based on a model that accounted for this indi-
vidual variation. However, this would not be the case had their pri-
mary objective been to quantify individual heterogeneity in state 
transition probabilities.

If the primary objective of this analysis had been to gain an un-
derstanding of heterogeneity in individual movement behaviour, 
it is not clear how one would proceed with such a complex ran-
dom effects model. Interpreting generic individual variation is 
already difficult in simpler finite mixture models (e.g. DeRuiter 
et al., 2017; Towner et al., 2016), and it would be challenging to 
concoct a biological story explaining these various pieces of ev-
idence for individual heterogeneity across N (N − 1) = 12 contin-
uous random effects (Table  5) and MN2  =  240 state transition 
probabilities (Figure  6). The random effects could reflect un-
explained population-level behavioural heterogeneity attribut-
able to different animal personalities (e.g. Hertel et  al.,  2020; 
Réale et  al.,  2007), but they could also simply be an artefact of 
deployments of differing lengths being observed in different en-
vironmental and behavioural contexts (e.g. DeRuiter et al., 2017; 

Model
AICc 
weight �AICc BIC weight �BIC NLL nPar

TMB 0.65 0.00 0.99 0.00 18,459.69 84

mix3 0.35 1.27 0.00 79.37 18,445.14 98

mix4 0.00 15.75 0.00 166.03 18,438.12 111

mix2 0.00 45.37 0.00 50.96 18,481.29 85

null 0.00 75.71 0.01 8.47 18,510.40 72

fixed 0.00 86.78 0.00 933.87 18,322.38 240

TA B L E  4   Model selection results for 
the long-finned pilot whale example. 
Results include AICc weights, ΔAICc, BIC 
weights, ΔBIC, negative log-likelihood 
value (NLL) and number of parameters 
(nPar)
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Towner et al., 2016). This is very difficult to determine, and I will 
not attempt to do so here. However, this highlights the challenge 
of interpreting random effects in biological terms.

5  | DISCUSSION

I have investigated the benefits of accounting for individual variation 
in the hidden state process of HMMs from a practical perspective, 
with emphasis on datasets common to animal movement behaviour 
biotelemetry studies. While my simulations covered a wide range of 
scenarios, they were by no means exhaustive. For example, I did not 
investigate pathological or degenerate cases with ‘bathtub-shaped’ 
distributions for the state transition probabilities and instead fo-
cused on less extreme forms of individual heterogeneity. While 
limiting Tm ≤ 250 proved sufficient for demonstrating general pat-
terns in model performance as a function of time series lengths, 
telemetry devices can of course produce much longer time series. 
For much larger datasets (e.g. M ≫ 100 and Tm ≫ 250), parameter 
estimates from the data-generating model can be expected to ex-
hibit reduced bias and increased precision relative to the scenarios 
examined here. I did not examine sampling scenarios more typical 
of capture–recapture (Pradel, 2005) or species occurrence (Gimenez 
et al., 2014) HMMs, which often involve a larger number of individu-
als and shorter time series than the scenarios examined here. I also 
limited my study to maximum likelihood inference via direct numeri-
cal maximization of the likelihood, although I believe similar patterns 
would emerge using expectation-maximization (e.g. Altman, 2007) 
or Bayesian analysis methods (e.g. Turek et al., 2016).

I focused on individual-level random effects in the hidden state 
process because these have received the most attention in the 
movement modelling literature so far (e.g. DeRuiter et  al.,  2017; 
Isojunno et al., 2017; McKellar et al., 2015; Towner et al., 2016). 
Importantly, I have not examined individual effects on the state-
dependent observation distribution parameters and would not 
necessarily expect the same patterns to emerge from a similar 
investigation of individual variation in the observation process. 

While this also warrants further investigation, there is already 
some evidence for the importance of accounting for individual 
variation in the state-dependent distributions (e.g. Altman, 2007; 
Carter et al., 2020; Langrock et al., 2012; McClintock et al., 2013; 
Rueda et  al.,  2013; Schliehe-Diecks et  al.,  2012). In particular, I 
would expect unexplained individual variation in the observation 
process to be more consequential for state assignment.

HMMs tend to perform better as serial dependence in the data 
increases, particularly when state-dependent observation distribu-
tions overlap. Thus, there may be specific conditions (e.g. ‘much’ 
overlap with much stronger serial dependence) where discrete ran-
dom effects may perform better as an approximation for continuous 
variation. However, the consequences of this model misspecifica-
tion will be dependent on the form of heterogeneity, the degree of 
overlap, the amount of serial dependence and other qualities of the 
data. I showed that this approximation is not generally robust, and, 
in practice, it may be very difficult to determine whether it is reliable 
when truth is unknown.

The simulations and case study have highlighted some import-
ant considerations for practitioners contemplating the inclusion 
of individual random effects in their own analyses. As the results 
have provided much to digest, I break down these considerations 
under the following themes: (a) When to account for individual 
variation?; (b) How to account for individual variation?; (c) Is there 
evidence of individual variation? and (d) How to interpret individ-
ual variation?

5.1 | When to account for individual variation?

Accounting for generic individual variation comes at significant cost 
in terms of implementation and computation, particularly for random 
effects. When weighing the costs and benefits of random effects, 
three primary considerations are the study objectives, sample size 
and model complexity. If the objective is strictly state assignment, 
then the inclusion of individual effects on the hidden state process 
makes little difference in terms of inference. Many movement HMM 

Parameter Estimate SE Lower Upper %CV %CIL

�1,2 0.47 0.27 0.17 1.35 58 251

�1,3 1.17 0.69 0.40 3.39 59 256

�1,4 1.16 0.30 0.71 1.92 26 104

�2,1 0.56 0.41 0.15 2.03 74 336

�2,3 0.25 2.96 0.00 19.63 1,173 7,766

�2,4 0.03 0.34 0.00 2.26 1,195 7,895

�3,1 0.02 0.38 0.00 2.35 1926 11,773

�3,2 0.22 7.62 0.00 40.52 3,498 18,611

�3,4 0.91 0.39 0.41 2.04 43 179

�4,1 0.55 0.18 0.29 1.04 34 138

�4,2 1.14 0.40 0.58 2.24 36 146

�4,3 0.79 0.32 0.37 1.68 40 166

TA B L E  5   Estimates, standard errors 
(SE), 95% confidence intervals (lower, 
upper), percent coefficient of variation 
(%CV) and percent confidence interval 
length (%CIL) for individual random effect 
variance parameters (σ) from the TMB 
model fitted to the long-finned pilot whale 
data
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F I G U R E  6   Estimated state transition probabilities (and 95% confidence intervals) among N = 4 states (1 = ‘exploratory’, 2 = ‘foraging’, 
3 = ‘crowded’, 4 = ‘directed’) for M = 15 long-finned pilot whales from the TMB model including continuous individaul-level random effects. 
Each of the 4 × 4 = 16 state transition probabilities is labelled on the y-axis as ‘i → j’, indicating the probability of switching from state i to 
state j
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applications primarily focus on state assignment for inferences 
about behaviour, activity budgets and/or resource selection (e.g. 
Beyer et al., 2013; Pirotta et al., 2018; Roever et al., 2014), with lit-
tle emphasis on quantifying or understanding heterogeneity in state 
transition probabilities. Under these circumstances, random effects 
in the hidden state process simply may not be worth the additional 
effort.

If inference about individual variation in state transition prob-
abilities is a primary objective, then random effect models should 
certainly be explored. When properly specified and fitted, individual 
random effects never hurt and tend to decrease bias and increase 
coverage (relative to the null model) and increase precision (relative 
to the fixed effects model). Using random effects to account for un-
explained individual variation can also improve our ability to reliably 
estimate the effects of measurable covariates on the hidden state 
process. However, it is important to consider that the feasibility and 
performance of a given mixed HMM will depend on model complex-
ity and the amount of information contained in the data, as well as 
other factors that are typically out of the control of researchers, 
such as the degree of state-dependent distribution overlap (where 
less is generally better) and state persistence (where more is gen-
erally better). My results suggest that mixed HMMs generally do 
not perform that well (and can be challenging to fit) with relatively 
few individuals and short time series, and these issues will only be 
exacerbated when N > 2. As N increases, the likelihood of observ-
ing all state transitions for individuals with very short time series 
decreases, thereby potentially making the estimation less reliable. 
With smaller sample sizes typical of animal biotelemetry studies (e.g. 
M  <  50 and Tm  <  250), inferences about individual heterogeneity 
based on continuous random effects will tend to be weak. This is due 
to poor precision for the random effects variance parameters, which 
also tend to be underestimated with smaller sample sizes. When de-
signing studies, researchers interested in applying continuous ran-
dom effect models should consider allocating additional resources 
to maximize M (and, to a lesser degree, Tm).

5.2 | How to account for individual variation?

Continuous random effect models (BW and TMB) proved more ro-
bust to the underlying form of individual heterogeneity than null or 
discrete random effect models. The approximate approach of BW 
generally performed as well as (or better than) TMB when there was 
little overlap in the observation distributions, but the TMB model 
proved more robust to higher degrees of overlap. Thus, if custom 
coding a continuous random effects model using TMB is beyond the 
skill set of a practitioner, the BW approach can be a reliable alterna-
tive in limited cases with very distinct observation distributions. This 
often applies to animal movement HMMs describing very different 
modes of movement (e.g. ‘foraging’ and ‘transit’), but the degree of 
overlap should be investigated (e.g. Beyer et al., 2013) before pro-
ceeding with the BW approach. As demonstrated in the long-finned 
pilot whale example, BW is also of limited utility due to boundary 

issues that are more likely to occur as the number of states increases, 
the number of individuals increases, the lengths of time series de-
crease and the degree of overlap increases. The TMB model does 
not suffer from these limitations, and I generally found the Laplace 
approximation as implemented in TMB to perform reasonably well 
across all HMM scenarios examined.

Discrete random effects are generally the best option only when 
individual heterogeneity is attributable to unmeasured categori-
cal factors. While many categorical factors (e.g. sex, age class) can 
often be measured when deploying telemetry tags, others such as 
disease or breeding status often cannot. I do not advise using dis-
crete random effects to account for continuous individual variation 
as this can underestimate uncertainty in state transition probabili-
ties and lead to spurious inferences about covariate effects. If infer-
ence about individual variation in state transition probabilities is the 
primary objective, then investigating both discrete and continuous 
random effect models appears to be worth the effort for potential 
gains in terms of parameter estimation and state assignment. Yet, 
care must be taken when fitting these complicated models. As illus-
trated by the long-finned pilot whale example, false convergence of 
random effect models can be particularly problematic as the number 
of states increases and sample sizes decrease.

Individual covariates are arguably the best way to account for 
(and learn about) potential factors driving individual heterogeneity 
in the hidden state process. Relative to random effect models, co-
variate models are also much easier to implement using existing soft-
ware (Table 6). When designing telemetry studies, careful thought 
should be put towards identifying and collecting any measurable 
individual covariates that may be informative. When available co-
variates do not sufficiently explain individual heterogeneity, then 
random effects are certainly worth pursuing as a more parsimonious 
alternative to individual fixed effects. Discrete random effects and 
the approximate continuous random effect approach of Burnham 
and White (2002) can be implemented using the R package momen-
tuHMM (McClintock & Michelot, 2018). If the user is familiar enough 
with the C++ template to custom code HMMs from scratch, then 
TMB (Kristensen et al., 2016) can be used to implement any of the 
models. TMB will also often be faster than optimization routines that 
rely on numerical differentiation.

5.3 | Is there evidence of individual variation?

There are several ways to evaluate the strength of evidence for in-
dividual variation. These can include null hypothesis tests for the 
estimated coefficients of individual effects (for covariate, fixed or 
discrete random effect models) or random effect variance estimates 
(for continuous random effect models). Estimated coefficients or 
random effect variances that are significantly different from zero 
typically indicate evidence of individual variation. Model selection 
criteria such as AIC or BIC can also be used for selecting or averag-
ing models from a candidate set. I found the conditional AIC to work 
well for selecting among null, fixed, finite mixture and BW models 
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when sample sizes were larger and the observation distributions 
more distinct. The marginal AIC also worked reasonably well for se-
lecting among the null, finite mixture and TMB models under these 
scenarios, but it was conservative relative to the null likelihood ratio 
test. If inference about individual variation in the hidden state pro-
cess is the primary objective and the exact form of any unexplained 
heterogeneity is unknown, my results suggest that candidate model 
sets should include models with both discrete and continuous ran-
dom effects. This was evident in the long-finned pilot whale exam-
ple, where I found stronger evidence for continuous random effects 
than for finite mixture models.

5.4 | How to interpret individual variation?

Interpretation of measured individual covariate effects is straight-
forward, but it can be difficult to interpret generic individual-level 
effects. Discrete random effect models are sensitive to small sam-
ple sizes and can tend to identify spurious ‘behavioural contexts’ 
that are an artefact of shorter time series (e.g. DeRuiter et al., 2017; 
Towner et al., 2016). In my simulation study, I also found individual 
fixed effect models to be susceptible to these small sample issues. 
Care should therefore be taken to avoid overinterpretation of in-
dividual fixed effects or finite mixture distributions. Continuous 
random effect models will tend to be less susceptible to small 
sample issues because they will shrink effect sizes for individuals 
with shorter time series towards the population mean. However, 
as demonstrated in the long-finned pilot whale example, this 
makes continuous random effects no less difficult to interpret in 
biological terms. Generic individual random effects only indicate 
evidence of individual variation in the hidden state process, but 
from evolutionary theory we already understand that biological 
parameters must in reality vary across individuals. Perhaps the 
most useful inference from evidence of generic individual hetero-
geneity is that there remains a need to identify and collect more 
informative covariates that can help explain the drivers of the un-
derlying variation in the hidden state process.
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